Class gaussian1d_t¶
Defined in File gaussian1d.hpp
Inheritance Relationships¶
Base Type¶
public wt::distribution1d_t
(Class distribution1d_t)
Class Documentation¶
-
class gaussian1d_t : public wt::distribution1d_t¶
1D Gaussian distribution. Correctly handles the singular case where the standard deviation is 0 and the distribution becomes a Dirac.
Public Functions
-
inline gaussian1d_t(f_t sigma, f_t mu = 0)¶
Construct a new 1D Gaussian distribution.
- Parameters:
sigma – standard deviation
mu – mean
-
gaussian1d_t(const gaussian1d_t&) noexcept = default¶
-
gaussian1d_t &operator=(const gaussian1d_t&) noexcept = default¶
-
inline virtual std::unique_ptr<distribution1d_t> clone() const override¶
-
inline auto mean() const noexcept¶
The mean of the Gaussian distribution.
-
inline auto std_dev() const noexcept¶
The standard deviations of the Gaussian distribution.
-
inline virtual f_t pdf(f_t x, measure_e measure = measure_e::continuos) const noexcept final¶
PDF.
- Parameters:
x – value
- Returns:
PDF of the distribution at x
-
inline virtual sample_ret_t sample(sampler::sampler_t &sampler) const noexcept final¶
Samples a Gaussian distributed point.
-
inline f_t integrate(const range_t<f_t> &r) const noexcept¶
Integrates this Gaussian distribution over a range.
-
inline f_t integrate(const gaussian1d_t &g) const noexcept¶
Integrates this Gaussian distribution over the support of another Gaussian distribution.
-
inline bool is_dirac() const noexcept¶
Returns true if the distribution is degenerate (a Dirac delta)
-
inline gaussian1d_t(f_t sigma, f_t mu = 0)¶